

QUESTION PAPER WITH SOLUTION

MATHEMATICS _ 6 Sep. _ SHIFT - 2

H.O. : 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |🖂: info@motion.ac.in

MOTION[®] JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

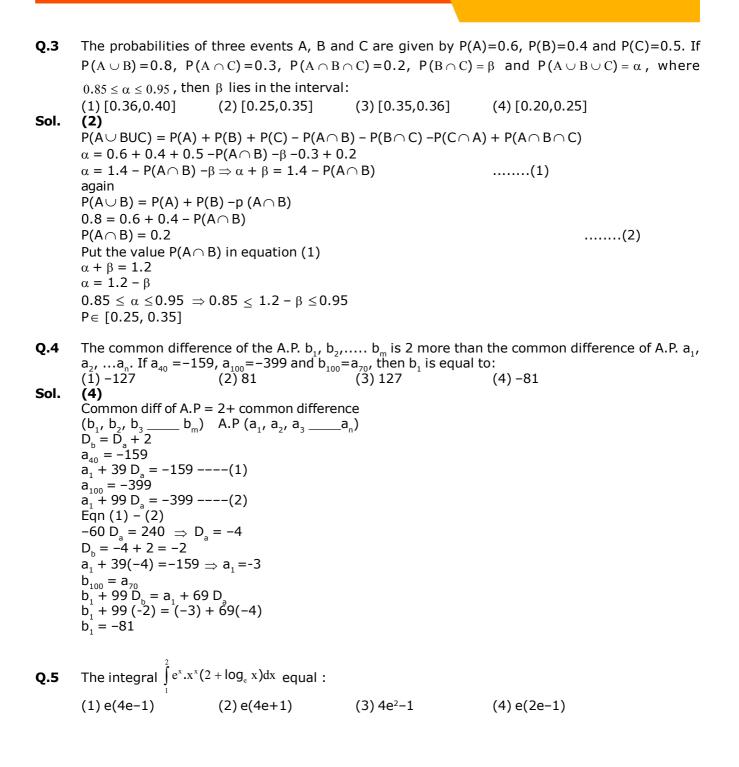
Q.1 If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity e of the ellipse satisfies:

(1) $e^4 + 2e^2 - 1 = 0$ (2) $e^2 + 2e - 1 = 0$ (3) $e^4 + e^2 - 1 = 0$ (4) $e^2 + e^{-1} = 0$ Sol. (3)

Equation of normal at $\left(ae, \frac{b^2}{a}\right)$

$$\frac{a^2x}{ae} - \frac{b^2y}{\frac{b^2}{a}} = a^2 - b^2$$

It passes through (0,-b)
 $ab = a^2 e^2$
 $a^2 b^2 = a^4 e^4$ (b² = a²(1-e²))
1-e² = e⁴


Q.2 The set of all real values of λ for which the function $f(x) = (1 - \cos^2 x) \cdot (\lambda + \sin x)$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, has exactly one maxima and exactly one minima, is:

(1)
$$\left(-\frac{3}{2},\frac{3}{2}\right) - \{0\}$$
 (2) $\left(-\frac{1}{2},\frac{1}{2}\right) - \{0\}$ (3) $\left(-\frac{3}{2},\frac{3}{2}\right)$ (4) $\left(-\frac{1}{2},\frac{1}{2}\right)$
Sol. (1)
 $f(x) = (1 - \cos^2 x) (\lambda + \sin x)$
 $f(x) = \sin^2 x (\lambda + \sin x)$
 $f'(x) = 2\sin x \cos (\lambda + \sin x) + \sin^2 x (\cos x)$
 $= \sin^2 x \left(\lambda + \sin x + \frac{\sin x}{2}\right)$
 $= \sin^2 x \left(2\lambda + 3\sin x\right)$
 $\sin^2 x = 0 \Rightarrow \sin x = 0 \rightarrow \text{One point}$
 $2\lambda + 3\sin x \Rightarrow \sin x = \frac{-2\lambda}{3}$
 $\sin x \in (-1,1) - \{0\}$
 $-1 < \frac{-2\lambda}{3} < 1 \Rightarrow \frac{-3}{2} < \lambda < \frac{3}{2}$
 $\lambda \in \left(\frac{-3}{2},\frac{3}{2}\right) - \{0\}$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

FREE Online Lectures Available on You Tube

CRASH COURSE

FOR JEE ADVANCED 2020

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access • Live Test Paper Discussion ◆ Final Revision Exercises

Start Date: 07 Sept. 2020

MOTION

MOTION JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

Sol. (1)

$$\int_{1}^{2} e^{x} x^{x} (2+\ln x) dx$$

$$e^{x} x^{x} = t$$

$$(e^{x} x^{x} + e^{x} x^{x} (1+\ln x)) dx = dt$$

$$e^{x} x^{x} (2+\ln x) dx = dt$$

$$\int_{1}^{4e^{2}} dt = [t]_{e}^{4e^{2}} = 4 \cdot e^{2} - e = e(4e-1)$$

- **Q.6** If the tangent to the curve, $y=f(x)=x\log_e x$, (x>0) at a point (c,f(c)) is parallel to the line-segment joining the points (1,0) and (e,e), then c is equal to:
- (1) $e^{\left(\frac{1}{1-e}\right)}$ (2) $\frac{e-1}{e}$ (3) $\frac{1}{e-1}$ (4) $e^{\left(\frac{1}{e-1}\right)}$ (4) $y = f(x) = x \ln x$ Sol. $m_1 = \frac{dy}{dr} |_{(c_1, f(c))} = (lnx+1) |_{c_1, f(c))}$ = lnc + 1 $m_1 = \frac{e}{e - 1}$ $m_2 = m_1 \implies lnc + 1 = \frac{e}{e - 1}$ $lnc = \frac{e}{e-1} - 1 = \frac{1}{e-1}$ If $y = \left(\frac{2}{\pi}x - 1\right)$ cosecx is the solution of the differential equation, $\frac{dy}{dx} + p(x)y = \frac{2}{\pi} \operatorname{cosecx}, 0 < x < \frac{\pi}{2}$, 0.7 then the function p(x) is equal to: (1) cosec x **2** (3) tan x (2) cot x (4) sec x Sol. $y = \left(\frac{2}{\pi}x - 1\right) \operatorname{cosecx}$ Differentiate w.r.t x $\frac{dy}{dx} = \frac{2}{\pi} \operatorname{cosecx} - \left(\frac{2x}{\pi} - 1\right) \operatorname{cosecx} \cdot \operatorname{cotx}$

 $\frac{dy}{dx} + \left(\frac{2x}{\pi} - 1\right) \operatorname{cosecx} \operatorname{cotx} = \frac{2}{\pi} \operatorname{cosecx}$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

 $\frac{dy}{dx} + y \operatorname{cotx} = \frac{2}{\pi} \operatorname{cosecx}$ Compare this differential equation with given differential equation P(x) = cotxQ.8 If α and β are the roots of the equation 2x(2x+1)=1, then β is equal to: (1) $2\alpha(\alpha - 1)$ (2) $-2\alpha(\alpha + 1)$ (4) $2\alpha(\alpha + 1)$ (3) $2\alpha^2$ Sol. (2) 2x(2x+1) = 1If $\alpha \& \beta$ are the roots i.e $\alpha \& \beta$ satisy this equation $2\alpha (2\alpha + 1) = 1 \qquad \Rightarrow \alpha (2\alpha + 1) = \frac{1}{2}$ $4x^2 + 2x - 1 = 0$ $\alpha + \beta = \frac{-1}{2} = -\alpha (2\alpha + 1)$ $\beta = -\alpha (2\alpha + 1) - \alpha = -\alpha (2\alpha + 2) = -2\alpha (\alpha + 1)$ Q.9 For all twice differentiable functions f: $R \rightarrow R$, with f(0)=f(1)=f'(0)=0, (1) f''(x)=0, at every point $x \in (0,1)$ (2) $f''(x) \neq 0$, at every point $x \in (0,1)$ (3) f''(x)=0, for some $x \in (0,1)$ (4) f''(0)=0Sol. (3) Applying rolle's theorem in [0,1] for function f(x) $f'(c) = 0, c \in (0,1)$

 $f'(c) = 0, c \in (0,1)$ again applying rolles theorem in [0,c] for function f'(x) s $f''(c_1) = 0, c_1 \in (0,c)$

Q.10 The area (in sq.units) of the region enclosed by the curves $y=x^2-1$ and $y=1-x^2$ is equal to :

(1)
$$\frac{4}{3}$$
 (2) $\frac{7}{2}$ (3) $\frac{16}{3}$ (4) $\frac{8}{3}$
Sol. (4)
 $(-1,0)$ $(0,1)$ $(1,0)$
 $(0,-1)$ $(1,0)$
Total area = 4 $\int_{0}^{1} (1-x^{2}) dx = 4 \left[x - \frac{x^{3}}{3} \right]_{0}^{1}$

FREE Online Lectures Available on You Tube

CRASH COURSE

FOR JEE ADVANCED 2020

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

$$= 4 \left[1 - \frac{1}{3} \right] = \frac{8}{3} sq.unit$$

Q.11 For a suitably chosen real constant a, let a function, $f:R-\{-a\} \rightarrow R$ be defined by $f(x) = \frac{a-x}{a+x}$. Further suppose that for any real number $x \neq -a$ and $f(x) \neq -a$, (fof)(x)=x. Then $f\left(-\frac{1}{2}\right)$ is equal to:

(3) $\frac{1}{3}$ $(4) -\frac{1}{3}$ (1) - 3(2) 3 Sol. (2) $f(x) = \frac{a-x}{a+x}$ $f(f(x)) = \frac{a - f(x)}{a + f(x)} = x$ $\frac{a-ax}{1+x} = f(x) = \frac{a-x}{a+x}$ $a\left(\frac{1-x}{1+x}\right) = \frac{a-x}{a+x}$ So $f(x) = \frac{1-x}{1+x}$ $f\left(\frac{-1}{2}\right) = 3$ **Q.12** Let $\theta = \frac{\pi}{5}$ and $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$. If $B = A + A^4$, then det (B): (2) lies in (1,2) (3) lies in (2,3) (4) is zero (1) is one Sol. (2) $\mathsf{A} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ $B = A + A^4$ $A^{2} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

Motion

 $= \begin{bmatrix} \cos^2 \theta - \sin^2 \theta & 2\sin \theta \cos \theta \\ -2\sin \theta \cos \theta & -\sin^2 \theta + \cos^2 \theta \end{bmatrix}$ $A^2 = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$ Simmilarly $A^4 = \begin{bmatrix} \cos 4\theta & \sin 4\theta \\ -\sin 4\theta & \cos 4\theta \end{bmatrix}$ $B = A^4 + A = \begin{bmatrix} \cos 4\theta & \sin 4\theta \\ -\sin 4\theta & \cos 4\theta \end{bmatrix} + \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ $B = A^4 + A = \begin{bmatrix} \cos 4\theta + \cos \theta & \sin 4\theta + \sin \theta \\ -\sin 4\theta - \sin \theta & \cos 4\theta + \cos \theta \end{bmatrix}$ $B = (\cos 4\theta + \cos \theta)^2 + (\sin 4\theta + \sin \theta)^2$ $= \cos^2 4\theta + \cos^2 \theta + 2\cos 4\theta \cos \theta$ $+ \sin^2 4\theta + \sin^2 \theta + 2 \sin 4\theta - \sin \theta$ $= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$ $= 2 + 2 (\cos 4\theta \cos \theta + \sin 4\theta \sin \theta)$ $= 2 + 2 \cos 3\theta$ $at \theta = \frac{\pi}{5}$ $|B| = 2 + 2 \cos \frac{3\pi}{5} = 2 - (1 - \sin 18)$

- $|\mathsf{B}| = 2\left(1 \frac{\sqrt{5} 1}{4}\right) = 2\left(\frac{5 \sqrt{5}}{4}\right) = \frac{5 \sqrt{5}}{2}$
- **Q.13** The centre of the circle passing through the point (0,1) and touching the parabola $y=x^2$ at the point (2,4) is :

$(1)\left(\frac{3}{10},\frac{16}{5}\right)$	$(2)\left(\frac{6}{5},\frac{53}{10}\right)$	$(3)\left(\frac{-16}{5},\frac{53}{10}\right)$	$(4)\left(\frac{-53}{10},\frac{16}{5}\right)$

Sol. (3)

Circle passing through point (0,1) and touching curve $y = x^2$ at (2,4) tangent at (2,4) is $\frac{(y+4)}{2} = x(2)$ $\Rightarrow y + 4 = 4x \Rightarrow y - 4x - 4 = 0$ Equation of circle $(x-2)^2 + (y-4)^2 + \lambda(4x-y-4) = 0$ Passing through (0,1)

 $4 + 9 + \lambda(-5) = 0$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 ● Doubt Support ● Advanced Level Test Access ● Live Test Paper Discussion ● Final Revision Exercises

JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

Motion

$$\lambda = \frac{13}{5}$$

Circle is
$$x^{2}-4x + 4 + y^{2} - 8y + 16 + \frac{13}{5} [4x - y - 4] = 0$$

$$x^{2} + y^{2} + \left(\frac{52}{5} - 4\right) x - \left(8 + \frac{13}{5}\right) y + 20 - \frac{52}{5} = 0$$

$$x^{2} + y^{2} + \frac{32}{5} x - \frac{53}{5} y + \frac{48}{5} = 0$$

Centre is $\left(-\frac{16}{5}, \frac{53}{10}\right)$

Q.14 A plane P meets the coordinate axes at A, B and C respectively. The centroid of ΔABC is given to be (1,1,2). Then the equation of the line through this centroid and perpendicular to the plane P is:

(1)
$$\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-2}{1}$$

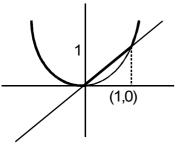
(2) $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$
(3) $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$
(4) $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{2}$
Sol. (2)
 $G = \left(\frac{\alpha}{3}, \frac{\beta}{3}, \frac{\gamma}{3}\right) = (1, 1, 2)$
 $\alpha = 3, \beta = 3, \gamma = 6$
Equation of plane is
 $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1$
 $\frac{x}{3} + \frac{y}{3} + \frac{z}{6} = 1$
 $2x + 2y + z = 6$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

Motion

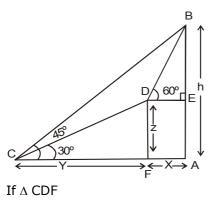

Require line is
$$\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$$

- **Q.15** Let $f: R \to R$ be a function defined by $f(x)=max \{x,x^2\}$. Let S denote the set of all points in R, where f is not differentiable. Then
 - $(1) \{0,1\}$
 - (3) {1}

(1)

(2) ♦ (an empty set)(4) {0}

Sol.



Function is not differentiable at two point $\{0,1\}$

Q.16 The angle of elevation of the summit of a mountain from a point on the ground is 45°. After climbing up one km towards the summit at an inclination of 30° from the ground, the angle of elevation of the summit is found to be 60°. Then the height (in km) of the summit from the ground is:

(1)
$$\frac{1}{\sqrt{3}+1}$$
 (2) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ (3) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$ (4) $\frac{1}{\sqrt{3}-1}$

Sol. (4)

Sin30° =
$$\frac{z}{1} \Rightarrow$$
 Z = $\frac{1}{2}$ km

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

Motion[®]

$$\begin{aligned} \cos 30^{\circ} = \frac{y}{1} \Rightarrow y = \frac{\sqrt{5}}{2} \text{ km} \\ \text{Now in ABC} \\ \tan 45 = \frac{h}{x+y} \Rightarrow h = x+y \\ X = h - \frac{\sqrt{5}}{2} \\ \text{Now in ABDE} \\ \tan 60^{\circ} = \frac{h-z}{x} \\ \sqrt{3}x = h - \frac{1}{2} \\ \sqrt{3}\left(h - \frac{\sqrt{3}}{2}\right) = h - \frac{1}{2} \Rightarrow h = \frac{1}{\sqrt{3}-1} \text{ km} \end{aligned}$$

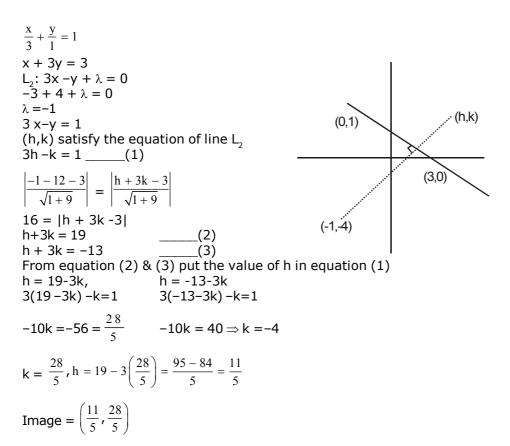
$$\begin{aligned} \textbf{Q.17} \quad \text{If the constant term in the binomial expansion of } \left(\sqrt{x} - \frac{k}{x^2}\right)^{10} \text{ is 405, then } |k| \text{ equals:} \\ \textbf{30.} \quad \textbf{(1) 1} \qquad (2) 9 \qquad (3) 2 \qquad (4) 3 \end{aligned}$$

$$\begin{aligned} \textbf{10} C_r \left(-\frac{k}{x^2}\right)^r \left(\sqrt{x}\right)^{10 r} \\ \frac{10}{2} C_r \left(-\frac{k}{x^2}\right)^r \left(\sqrt{x}\right)^{10 r} \\ \frac{10}{2} C_r \left(-\frac{k}{x^2}\right)^r \left(\sqrt{x}\right)^{10 r} \\ \frac{10}{3} C_r \left(-\frac{k}{3}\right)^r \left(\sqrt{x}\right)^r \left(\sqrt{x}\right)^{10 r} \\ \frac{10}{3} C_r \left(-\frac{k}{3}\right)^r \left(\sqrt{x}\right)^{10 r} \\ \frac{10}{3} C_r \left(-\frac{k}{3}\right)^r \left(\sqrt{x}\right)^r \left(\sqrt{x}\right)^r \\ \frac{10}{3} C_r \left(-\frac{k}{3}\right)^r \left(\sqrt{x}\right)^r \left(\sqrt{x}\right)^r \\ \frac{10}{3} C_r \left(-\frac{k}{3}\right)^r \left(\sqrt{x}\right)^r \left(\sqrt{x}\right)^r \\ \frac{10}{3} C_r \left(-\frac{k}{3}\right)^r \\ \frac{10}{3}$$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Doubt Support
 Advanced Level Test Access
 Live Test Paper Discussion
 Final Revision Exercises


Go Premium at ₹ 1100

 $x^{2} - y^{2} = 0 \Rightarrow x^{2} = y^{2}$ $2xy = x^{2} + y^{2}$ $(x - y)^{2} = 0 \Rightarrow x = y$

Q.19 Let L denote the line in the xy-plane with x and y intercepts as 3 and 1 respectively. Then the image of the point (-1, -4) in this line is:

$(1)\left(\frac{11}{5},\frac{28}{5}\right)$	$(2)\left(\frac{8}{5},\frac{29}{5}\right)$	$(3)\left(\frac{29}{5},\frac{11}{5}\right)$	$(4)\left(\frac{29}{5},\frac{8}{5}\right)$
(1)			

Sol. (1)

- **Q.20** Consider the statement : "For an integer n, if n³-1 is even, then n is odd." The contrapositive statement of this statement is:
 - (1) For an integer n, if n is even, then n^3-1 is even
 - (2) For an integer n, if n is odd, then n^3-1 is even
 - (3) For an integer n, if n^3-1 is not even, then n is not odd.
 - (4) For an integer n, if n is even, then n^3-1 is odd

CRASH COURSE FOR JEE ADVANCED 2020 Go Premium at ₹ 1100 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

FREE Online Lectures Available on You Tube

Start Date: 07 Sept. 2020

MOTION

MOTION JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

Sol. (4)

P:n³−1 is even, q : n is odd Contrapositive of $p \rightarrow q = ~q \rightarrow ~p$ \Rightarrow If n is not odd then n³−1 is not even \Rightarrow For an integer n, if n is even, then n³−1 is odd

Q.21 The number of words (with or without meaning) that can be formed from all the letters of the word "LETTER" in which vowels never come together is_____

Sol. 120

 $\begin{array}{l} \text{Consonants} \rightarrow \text{LTTR} \\ \text{Vowels} \ \rightarrow \text{EE} \end{array}$

Total No of words = $\frac{6!}{2!2!} = 180$ Total no of words if vowels are together

$$=\frac{5!}{2!}=60$$

Required = 180 - 60 = 120

Q.22 If \vec{x} and \vec{y} be two non-zero vectors such that $|\vec{x} + \vec{y}| = |\vec{x}|$ and $2\vec{x} + \lambda \vec{y}$ is perpendicular to \vec{y} , then the value of λ is _____

Sol. 1

Sol.

$$\begin{aligned} \left|\overline{x} + \overline{y}\right|^2 &= \left|\overline{x}\right|^2 \\ \Rightarrow \left|\overline{y}\right|^2 + 2\overline{x}.\overline{y} = 0 \quad (1) \\ \text{and} \quad (2\overline{x} + \lambda\overline{y})\overline{y} = 0 \\ \Rightarrow \lambda \left(\left|\overline{y}\right|^2\right) + 2\overline{x}.\overline{y} = 0 \quad (2) \\ \text{by comparing (1) & (2)} \\ \text{we get } \lambda &= 1 \end{aligned}$$

Q.23 Consider the data on x taking the values 0, 2, 4, 8,, 2^n with frequencies ${}^nC_0, {}^nC_1, {}^nC_2, ..., {}^nC_n$,

respectively. If the mean of this data is $\frac{728}{2^n}$, then n is equal to _____

b $X_i(observation) = 0$ 2^2 2^n
 $f_i(frequency) = {}^nC_0 = {}^nC_1$ nC_2 $\dots = {}^nC_n$

$$\overline{x} = \frac{\sum f_i X_i}{\sum f_i}$$

FOR JEE ADVANCED 2020 FREE Online Lectures Available on You Tube

CRASH COURSE

Motion[®]

$$= \frac{0 \times {}^{n}C_{0} + 2 {}^{n}c_{1} + 2^{2} {}^{n}c_{2} + \dots + 2^{n} {}^{n}c_{n}}{{}^{n}c_{0} + {}^{n}c_{1} + \dots + {}^{n}c_{n}}$$
$$= \frac{3^{n} - 1}{2^{n}} = \frac{728}{2^{n}}$$
$$3^{n} = 729 = 3^{6}$$
$$n = 6$$

Q.24 Suppose that function $f: R \to R$ satisfies f(x+y)=f(x)f(y) for all $x, y \in R$ and f(1)=3.

If
$$\sum_{i=1}^{n} f(i) = 363$$
, then n is equal to
Sol. 5
 $f(x+y) = f(x) f(y)$
 $f(x)=a^x$
 $\Rightarrow f(1) = a = 3$
So $f(x) = 3^x$
 $\sum_{i=1}^{n} f(i) = 363$
 $\Rightarrow 3 + 3^2 + 3^3 + \dots + 3^n = 363$
 $\Rightarrow \frac{3(3^n - 1)}{2} = 363$
 $n = 5$

Q.25 The sum of distinct values of λ for which the system of equations

$$\begin{split} &(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0\\ &(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0\\ &2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0 \ ,\\ &\text{has non-zero solutions, is } ____\\ &\textbf{3} \end{split}$$

Sol.

$$\begin{vmatrix} \lambda - 1 & 3\lambda + 1 & 2\lambda \\ \lambda - 1 & 4\lambda - 2 & \lambda + 3 \\ 2 & 3\lambda + 1 & 3(\lambda - 1) \end{vmatrix} = 0$$
$$R_2 \rightarrow R_2 - R_1$$
$$R_3 \rightarrow R_3 - R_1$$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access • Live Test Paper Discussion ◆ Final Revision Exercises

JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

Motion

$$\begin{vmatrix} \lambda - 1 & 3\lambda + 1 & 2\lambda \\ 0 & \lambda - 3 & -\lambda + 3 \\ 3 - \lambda & 0 & \lambda - 3 \end{vmatrix}$$

$$C_{1} \rightarrow C_{1} + C_{3}$$

$$\begin{vmatrix} 3\lambda - 1 & 3\lambda + 1 & 2\lambda \\ -\lambda + 3 & \lambda - 3 & -\lambda + 3 \\ 0 & 0 & \lambda - 3 \end{vmatrix}$$

$$(\lambda - 3) [(3\lambda - 1) (\lambda - 3) - (3 - \lambda) (3\lambda + 1)] = 0$$

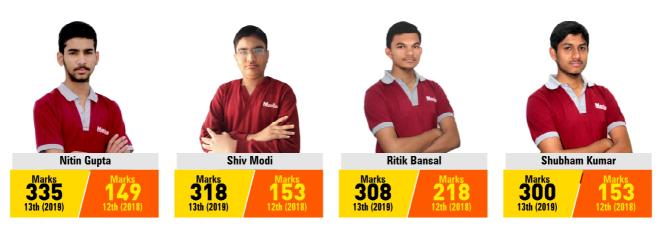
$$(\lambda - 3) [(3\lambda - 1) (\lambda - 3) - (3 - \lambda) (3\lambda + 1)] = 0$$

$$(\lambda - 3) [(3\lambda^{2} - 10\lambda + 3 - (8\lambda - 3\lambda^{2} + 3)]$$

$$(\lambda - 3) (6\lambda^{2} - 18\lambda) = 0$$

$$(6\lambda) (\lambda - 3)^{2} = 0$$

$$\lambda = 0, 3$$
sum of values of $\lambda = 0 + 3 = 3$



FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100 • Doubt Support ◆ Advanced Level Test Access ↓ Live Test Paper Discussion ◆ Final Revision Exercises

जब इन्होने पूरा किया अपना सपना ती आप भी पा सकते है लक्ष्य अपना

JEE MAIN RESULT 2019

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	😑 GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring	NA	NA	

FEE STRUCTURE

Admission **OPEN**

		•	•
CLASS	SILVER	GOLD	PLATINUM
7th/8th	FREE	₹ 12,000	₹ 35,000
9th/10th	FREE	₹ 15,000	₹ 40,000
11th	FREE	₹ 29,999	₹ 49,999
12th	FREE	₹ 39,999	₹ 54,999
12th Pass	FREE	₹ 39,999	₹ 59,999

+ Student Kit will be provided at extra cost to Platinum Student.

SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures

GOLD (Online) can be converted to regular classroom (Any MOTION Center) by paying difference amount after lockdown.

*** PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown.

New Batch Starting from : 16 & 23 September 2020

Zero Cost EMI Available

